
The 𝑜𝑠 module
It lets you interact with the operating system.

It provides functions that are available on Unix and/or Windows systems. If you're familiar
with the command console, you'll see that some functions give the same results as the
commands available on the operating systems.

A good example of this is the 𝑚𝑘𝑑𝑖𝑟 function, which allows you to create a directory just like
the 𝑚𝑘𝑑𝑖𝑟 command in Unix and Windows.

In addition to file and directory operations, the 𝑜𝑠 module enables you to:

• Get information about the OS.

• Manage processes.

• Operate on IO streams using file descriptors.

Before you create your first directory structure, you'll see how you can get information
about the current operating system. This is really easy because the 𝑜𝑠 module provides a
function called 𝑢𝑛𝑎𝑚𝑒, which returns an object containing the following attributes:

1. 𝑠𝑦𝑠𝑡𝑒𝑚𝑛𝑎𝑚𝑒 — stores the name of the operating system.
2. 𝑛𝑜𝑑𝑒𝑛𝑎𝑚𝑒 — stores the machine name on the network.
3. 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 — stores the operating system release.
4. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 — stores the operating system version.
5. 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 — stores the hardware identifier, e.g., x86_64.

This is how it’s used.

import os

print(os.uname())

posix.uname_result(sysname='Linux', nodename='a4789bc7ab70',
release='4.4.0-210-generic', version='#242-Ubuntu SMP Fri Apr 16 09:57:56
UTC 2021', machine='x86_64')

This is what I’ve got.

Don't be surprised if you get a different result, because it depends on your operating system.

Unfortunately, the 𝑢𝑛𝑎𝑚𝑒 function only works on some Unix systems. If you use Windows,
you can use the 𝑢𝑛𝑎𝑚𝑒 function in the platform module, which returns a similar result.

The 𝑜𝑠 module allows you to quickly distinguish the operating system using the name
attribute, which supports one of the following names:

• 𝑝𝑜𝑠𝑖𝑥 — you’ll get this name if you use Unix.

• 𝑛𝑡 — you’ll get this name if you use Windows.

• 𝑗𝑎𝑣𝑎 — you’ll get this if your code is written in Jython.

import os

print(os.name)

This is what I’ve got.

On Unix systems, there's a command called 𝑢𝑛𝑎𝑚𝑒 that returns the same information (if
you run it with the -a option) as the 𝑢𝑛𝑎𝑚𝑒 function.

Creating directories
The 𝑜𝑠 module provides a function called 𝑚𝑘𝑑𝑖𝑟, which, like the 𝑚𝑘𝑑𝑖𝑟 command in Unix

and Windows, allows you to create a directory. The 𝑚𝑘𝑑𝑖𝑟 function requires a path that can
be relative or absolute.

• 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 — this is a relative path which will create the
𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory in the current working directory.

• ./𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 — this is a relative path that explicitly points to the current
working directory. It has the same effect as the path above.

• . ./𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 — this is a relative path that will create the
𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory in the parent directory of the current working
directory;

• /𝑝𝑦𝑡ℎ𝑜𝑛/𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 — this is the absolute path that will create the
𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory, which in turn is in the python directory in the root
directory.

The code here is an example of how to create the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory using a
relative path. This is the simplest variant of the relative path, which consists of passing only
the directory name.

import os

os.mkdir("my_first_directory")

print(os.listdir())

If you test your code here, it will output the newly created [′𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦′] directory
(and the entire content of the current working catalog).

The 𝑚𝑘𝑑𝑖𝑟 function creates a directory in the specified path. Note that running the program
twice will raise a 𝐹𝑖𝑙𝑒𝐸𝑥𝑖𝑠𝑡𝑠𝐸𝑟𝑟𝑜𝑟.

This means that we cannot create a directory if it already exists. In addition to the path
argument, the 𝑚𝑘𝑑𝑖𝑟 function can optionally take the mode argument, which specifies
directory permissions. However, on some systems, the mode argument is ignored.

To change the directory permissions, the 𝑐ℎ𝑚𝑜𝑑 function is recommended, which works
similarly to the 𝑐ℎ𝑚𝑜𝑑 command on Unix systems. You can find more information about it in
the documentation. (chmod man page (linuxcommand.org), chmod - Wikipedia)

In the above example, another function provided by the 𝑜𝑠 module named 𝑙𝑖𝑠𝑡𝑑𝑖𝑟 is used.
The 𝑙𝑖𝑠𝑡𝑑𝑖𝑟 function returns a list containing the names of the files and directories that are
in the path passed as an argument.

If no argument is passed to it, the current working directory will be used (as in the example
above). It's important that the result of the 𝑙𝑖𝑠𝑡𝑑𝑖𝑟 function omits the entries '.' and '..',
which are displayed, e.g., when using the 𝑙𝑠 − 𝑎 command on Unix systems.

In both Windows and Unix, there's a command called 𝑚𝑘𝑑𝑖𝑟, which requires a directory
path. The equivalent of the above code that creates the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory is
the 𝑚𝑘𝑑𝑖𝑟 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 command.

Let’s say that you need to create another directory in the directory you’ve just created. Of
course, you can go to the created directory and create another directory inside it, but
fortunately the 𝑜𝑠 module provides a function called 𝑚𝑎𝑘𝑒𝑑𝑖𝑟𝑠, which makes this task
easier.

The 𝑚𝑎𝑘𝑒𝑑𝑖𝑟𝑠 function enables recursive directory creation, which means that all
directories in the path will be created. Here’s how it’s used.

import os

os.makedirs("my_first_directory/my_second_directory")

os.chdir("my_first_directory")

print(os.listdir())

https://linuxcommand.org/lc3_man_pages/chmod1.html
https://en.wikipedia.org/wiki/Chmod

Expected output:

[‘𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦’]

The code creates two directories. The first of them is created in the current working
directory, while the second in the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory.

You don't have to go to the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory to create the
𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory, because the 𝑚𝑎𝑘𝑒𝑑𝑖𝑟𝑠 function does this for you. In the
example above, we go to the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory to show that the 𝑚𝑎𝑘𝑒𝑑𝑖𝑟𝑠
command creates the 𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 subdirectory.

To move between directories, you can use a function called 𝑐ℎ𝑑𝑖𝑟, which changes the
current working directory to the specified path. As an argument, it takes any relative or
absolute path. In our example, we pass the first directory name to it.

The equivalent of the 𝑚𝑎𝑘𝑒𝑑𝑖𝑟𝑠 function on Unix systems is the 𝑚𝑘𝑑𝑖𝑟 command with the
−𝑝 flag, while in Windows, simply the 𝑚𝑘𝑑𝑖𝑟 command with the path:

Unix-like systems:

𝑚𝑘𝑑𝑖𝑟 − 𝑝 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦/𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦

Windows:

𝑚𝑘𝑑𝑖𝑟 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦/𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦

Getting current directory
The 𝑜𝑠 module provides a function that returns information about the current working
directory. It's called 𝑔𝑒𝑡𝑐𝑤𝑑.

import os

os.makedirs("my_first_directory/my_second_directory")

os.chdir("my_first_directory")

print(os.getcwd())

os.chdir("my_second_directory")

print(os.getcwd())

Here’s how it’s used.

Expected output:

. . ./𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦

. . ./𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦/𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦

In the example, we create the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory, and the
𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory inside it. In the next step, we change the current working
directory to the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory, and then display the current working
directory (first line of the result).

Next, we go to the 𝑚𝑦_𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory and again display the current working
directory (second line of the result). As you can see, the 𝑔𝑒𝑡𝑐𝑤𝑑 function returns the
absolute path to the directories.

On Unix-like systems, the equivalent of the 𝑔𝑒𝑡𝑐𝑤𝑑 function is the 𝑝𝑤𝑑 command, which
prints the name of the current working directory.

Deleting directory
The 𝑜𝑠 module also allows you to delete directories. It gives you the option of deleting a
single directory or a directory with its subdirectories. To delete a single directory, you can
use a function called 𝑟𝑚𝑑𝑖𝑟, which takes the path as its argument.

import os

os.mkdir("my_first_directory")

print(os.listdir())

os.rmdir("my_first_directory")

print(os.listdir())

Here is how it’s used.

When deleting a directory, make sure it exists and is empty, otherwise an exception will be
raised.

To remove a directory and its subdirectories, you can use the 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑖𝑟𝑠 function, which
requires you to specify a path containing all directories that should be removed:

import os

os.makedirs("my_first_directory/my_second_directory")

os.removedirs("my_first_directory/my_second_directory")

print(os.listdir())

As with the 𝑟𝑚𝑑𝑖𝑟 function, if one of the directories doesn't exist or isn't empty, an
exception will be raised.

In both Windows and Unix, there's a command called 𝑟𝑚𝑑𝑖𝑟, which, just like the 𝑟𝑚𝑑𝑖𝑟
function, removes directories. What's more, both systems have commands to delete a
directory and its contents. In Unix, this is the 𝑟𝑚 command with the −𝑟 flag.

The 𝑠𝑦𝑠𝑡𝑒𝑚() function
All functions presented in this part of the course can be replaced by a function called system,
which executes a command passed to it as a string.

The 𝑠𝑦𝑠𝑡𝑒𝑚 function is available in both Windows and Unix. Depending on the system, it
returns a different result.

In Windows, it returns the value returned by the shell after running the command given,
while in Unix, it returns the exit status of the process.

import os

returned_value = os.system("mkdir my_first_directory")

print(returned_value)

Expected output:

0

The above example will work in both Windows and Unix. In our case, we receive exit status
0, which indicates success on Unix systems.

This means that the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 directory has been created. As part of the

exercise, try to list the contents of the directory where you created the 𝑚𝑦_𝑓𝑖𝑟𝑠𝑡_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦

directory.

